
Appendix 4.1

This contains material sometimes seen in lectures if there is enough time.

Example 4.30 For Q ≥ 1 let fQ : [0, 1]→ R be given by

fQ (x) =

{

1 if x = p/q, in reduced terms, q ≤ Q,

0 otherwise.

Show that fQ is Riemann integrable over [0, 1] with integral equal to 0.

Solution. Given Q ≥ 1 the number of 0 ≤ p/q ≤ 1, so p ≤ q ≤ Q is ≤ Q2

(i.e. Q choices for q and ≤ Q choices for p).

Let n ≥ 1 and Pn be the arithmetic partition of [0, 1] which gives n
subintervals of width 1/n.

In every subinterval there is an irrational number at which fQ (x) is 0,
and thus mi = 0 for all i. Hence L(Pn, fQ) = 0.

In at most Q2 subintervals we will find a p/q in reduced form with q ≤ Q.
In such an interval Mi = 1. In all other intervals fQ (x) = 0 throughout and
so Mi = 0. Hence

U(Pn, fQ) =
n

∑

i=1

Mi (xi − xi−1) =
1

n

n
∑

i=1

Mi,

since (xi − xi−1) = 1/n for all 1 ≤ i ≤ n in the arithmetic partition Pn.
Next, dropping the terms Mi = 0 we get

U(Pn, fQ) =
1

n

n
∑

i=1
Mi=1

1 ≤
Q2

n
,

since Mi = 1 for at most Q2 values of i.

Combining

0 = L(Pn, fQ) ≤

∫ 1

0

fQ(x) dx ≤

∫ 1

0

fQ(x) dx ≤ U(Pn, fQ) ≤
Q2

n
.

Let n→∞ to get

0 ≤

∫ 1

0

fQ(x) dx ≤

∫ 1

0

fQ(x) dx ≤ 0, i.e.

∫ 1

0

fQ(x) dx =

∫ 1

0

fQ(x) dx = 0.
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Therefore we have verified the definition that fQ is Riemann integrable over
[0, 1] with integral 0. �

You should be able to check that for all x ∈ [0, 1] we have limQ→∞ fQ (x) =
f (x), where is f is the non-integrable function

f(x) =

{

1 if x is rational,

0 otherwise.

seen earlier. This is an unsatisfactory state of affairs, that the limit of a
sequence of Riemann integrable functions is not Riemann integrable or that
we don’t have

lim
Q→∞

∫ 1

0

fQ(x) dx =

∫ 1

0

lim
Q→∞

fQ(x) dx.

For the following result I said in the notes that it should not be hard for
the interested student.

Theorem 4.31 If f is monotonic on [a, b] then f is Riemann integrable on
[a, b].

Proof Assume f is increasing, the proof for decreasing is similar.

Let

Pn =

{

a+
b− a

n
j : 0 ≤ j ≤ n

}

be the arithmetic partition of [a, b] with n to be chosen. Then in the notes
it was shown that

L(Pn, f) = U(Pn, f) +
b− a

n
(f(a)− f(b)) . (6)

Recall that for all n ≥ 1,

L(Pn, f) ≤

∫ b

a

f ≤

∫ b

a

f ≤ U(Pn, f)

in which case

0 ≤

∫ b

a

f −

∫ b

a

f ≤ U(Pn, f)− L(Pn, f) =
b− a

n
(f(b)− f(a))
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by (6) . Let n→∞ to get

0 ≤

∫ b

a

f −

∫ b

a

f ≤ 0, i.e.

∫ b

a

f =

∫ b

a

f.

Hence we have verified the definition that f Riemann integrable on [a, b].
�

Example 4.32 Let

f : [0, 1]→ R, x 7→
1

1 + x2
.

Prove that f is Riemann integrable over [0, 1].

Solution f is a decreasing function on [0, 1] . �

Example 4.33 Let f : [0, 1]→ R be given by f(0) = 0 and, for x ∈ (0, 1],

f(x) =
1

n
where n is the largest integer satisfying x ≤

1

n
.

Draw the graph of f . Show that f is Riemann integrable on [0, 1]. How many
discontinuities does this function, f , have?

If F (x) =
∫ x

0
f(t) dt is F ′(x) = f(x) for all x ∈ (0, 1)?

Solution f is an increasing function on [0, 1] so it is integrable. It has a
countable infinity of discontinuities, showing that it is possible to integrate
a function with so many discontinuities.

You should be able to show that F ′(x) does not exist when x is of the
form 1/n for some n ≥ 1. Therefore at these points we cannot have F ′(x)
equals anything, let alone f(x). �
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Appendix 4.2

The observant student would have seen that we assumed the following result
in the proof of the Fundamental Theorem of Calculus.

Theorem 4.34 Assume that the bounded functions f and g are Riemann
integrable on [a, b]. Then

(i) Linearity f + g is Riemann integrable on [a, b] with

∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

(ii) Additive Property. For a < c < b, the function f in integrable over the
sub-intervals [a, c] and [c, b] with

∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Proof not given. �

The first result here is an extension of the first result in

Theorem 4.35 Assume that the bounded functions f and g are Riemann
integrable on [a, b]. Then

(i) Sum Rule: f + g is Riemann integrable on [a, b].

(ii) Product Rule: fg is Riemann integrable on [a, b] .

(iii) Quotient Rule: f/g is Riemann integrable on [a, b] if there exists

C > 0 such that |g (x)| ≥ C for all x ∈ [a, b].

(iv) the function |f |, defined by |f | (x) = |f(x)| for all x ∈ [a, b], is Riemann
integrable over [a, b] .

Proof not given. �

Of course there are no simple relationships between the integrals of fg
and f/g with f and g. While for |f | we saw (without proof) in the notes
that

∣

∣

∣

∣

∫ b

a

f

∣

∣

∣

∣

≤

∫ b

a

|f | .
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Appendix 4.3 Integration as the inverse of differentia-

tion.

Though the primitive of a continuous function need not be unique, because
of a possible constant, the value of definite integral is the difference between
the primitive evaluated at two points, when the unknown constant vanishes.
Thus

Corollary 4.36 Definite integral If g is continuous on [a, b] and G is a
primitive for g then

∫ x

y

g(t) dt = G(x)−G(y) = [G(t)]xy (7)

for all a ≤ y < x ≤ b.

Example 4.37 Prove that ln x, defined earlier as the inverse of ex, satisfies

ln x =

∫ x

1

dt

t

for all x > 0. This is often taken as the definition of the natural logarithm.

Solution On Question sheet. �

The Fundamental Theorem tells us how to differentiate an integral.

Example 4.38 Let

G(x) =

∫ x3

x2

et cos tdt.

Calculate G′(t) .

Solution. Let

F (y) =

∫ y

1

et cos tdt,

so G(x) = F (x3) − F (x2). Since et cos t is continuous we have, by the Fun-
damental Theorem, that F is differentiable and F ′(y) = ey cos y. Thus, by
the composite rule for differentiation,

G′(x) = 3x2F ′
(

x3
)

− 2xF ′
(

x2
)

= 3x2ex
3

cos
(

x3
)

− 2xex
2

cos
(

x2
)

.
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�

The next result follows from the simple observation that if F and G are
primitives for f and g respectively then FG is a primitive for Fg + fG, by
the Product Rule for differentiation. Then (7) gives

∫ x

y

(F (t) g(t) + f(t)G(t)) dt = [F (t)G(t)]xy ,

i.e.
∫ x

y

(F (t)G′(t) + F ′(t)G(t)) dt = [F (t)G(t)]xy .

It is more normal to write these functions as lower case (so f is not F ′,
but is rather replacing F , similarly with g). But be careful, since f and g
are replacing primitives they must share the properties of primitive functions,
i.e. differentiable with continuous derivatives.

Theorem 4.39 Integration by parts. Assume that f and g have contin-
uous derivatives on [a, b]. Then

∫ x

y

f(t) g′(t) dt = [f(t) g(t)]xy −

∫ x

y

f ′(t) g(t) dt.

Proof completed. �

As an example of the use of this, repeated application leads to the integral
form of the error term in Taylor’s Theorem.

Example 4.40 (Cauchy) Prove that if f (n+1) is continuous on [a, b] then

∫ x

a

(x− t)n

n!
f (n+1)(t) dt = Rn,af(x)

for all a ≤ x ≤ b, where Rn,a is the remainder term for the n-thTaylor Series.

Proof See Question Sheet. �

Applications Already used in previous Part 3 of this course to justify

ln 2 = 1−
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+ ... .

Above the Product Rule for differentiation led to a rule for integration.
Would the Chain or Composite Rule for differentiation lead to anything for
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integrals? Assume that g is continuous on [a, b] and differentiable on (a, b).
Thus g : [a, b] → I for some set I. Assume that F is a primitive for f on I
(for which it suffices that f is continuous on g ([a, b]).) Then the Composite
Rule for differentiation gives

(F ◦ g)′(t) = (F ′ ◦ g(t)) g′(t)

on (a, b). Then (7) gives

∫ b

a

(F ′ ◦ g(t)) g′(t) dt = [F ◦ g(t)]ba

= F (g (b))− F (g (a))

= [F ]
g(b)
g(a)

=

∫ g(b)

g(a)

F ′(x) dx,

using (7) again in the last step. This gives

Theorem 4.41 Change of Variable or Integration by Substitution

Assume that g is continuous on [a, b] and differentiable on (a, b).and f is
continuous on g ([a, b]). Then

∫ g(b)

g(a)

F ′(x) dx =

∫ b

a

(F ′ ◦ g(t)) g′(t) dt

where a = g(α) and b = g(β).

Proof completed. �

Note This result is often written as

∫ β

α

F ′(x) dx =

∫ g−1(β)

g−1(α)

(F ′ ◦ g(t)) g′(t) dt,

but this requires the existence of the inverse of g. Since g is continuous we will

require g to be strictly monotonic.

Example 4.42 Prove that

tanh x =

∫ x

0

dt

cosh2 t

for x ∈ R.
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Solution From the definition of cosh x we have
∫ x

0

dt

cosh2 t
= 4

∫ x

0

dt

(et + e−t)2
.

Make the change of variable y = et to get

∫ x

0

dt

(et + e−t)2
= 4

∫ ex

1

dy

y (y + y−1)2
= 4

∫ ex

1

ydy

(y2 + 1)2

=

[

−
2

y2 + 1

]ex

1

= 1−
2

e2x + 1

=
e2x − 1

e2x + 1
= tanh x.

�

Example 4.43 With ln x expressed as an integral, as we saw in an earlier
example, prove that for all a, b > 0 we have ln ab = ln a+ ln b.

Solution on Question sheet. �
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Appendix 4.4 Improper Integrals

We have only defined the integral for closed intervals and functions bounded
on such intervals. We finish with a list of definitions that try to extend the
situations in which our definitions are meaningful.

Definition 4.44 If f : [a,∞) → R is Riemann integrable on every interval
[a, b] and

lim
t→∞

∫ t

a

f(x) dx

makes sense with the limit existing, we define this limit to be
∫∞

a
f(x) dx and

we say that the integral converges. Otherwise is diverges.

Similarly for
∫ b

−∞
f(x) dx.

Example 4.45 Show that
∫ ∞

1

1

xα
dx

converges if, and only if, α > 1.

Solution on Question sheet. �

Definition 4.46 We define

∫ ∞

−∞

f(x) dx as

∫ 0

−∞

f(x) dx+

∫ ∞

0

f(x) dx,

and it converges only if both of these do so separately.

Definition 4.47 (Gauss, 1812) If f is defined on (a, b] and limα→a

∫ b

α
f(x) dx

makes sense and the limit exists, then we define the limit to be
∫ b

a
f(x) dx and

say that the integral converges. Otherwise is diverges.

Similarly for a function defined on [a, b).

Example 4.48 For what α does

∫ 1

0

dx

xα

converge?

Solution on Question sheet. �
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Definition 4.49 Assume that f is not defined at c in [a, b] but, for all η > 0,
is bounded in [a, c− η] ∪ [c+ η, b]. Then the Cauchy Principal Value

Integral is defined to be

P.V

∫ b

a

f(x) dx = lim
η→0

(
∫ c−η

a

f(x) dx+

∫ b

c+η

f(x) dx

)

,

provided that this limit exists.
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Appendix 4.5

The previous appendix contained material that sometimes is covered in lec-
tures, if there is enough time. This appendix covers material that is either
omitted from lectures due to lack of time (often left to students to do) or is
background to and expands on the lectures.

1. Riemann gave his definition of an integral in 1854. Here we have given
an approach due to Darboux from 1875. The upper and lower sums
above should strictly be called Upper and Lower Darboux sums. They
differ slightly from the Upper and Lower Riemann sums that you might
find in alternative accounts of integration. But be careful! In a book
by Strichartz the Darboux sums are called Riemann sums while, what
I would call Riemann sums, are called Cauchy sums. Very confusing!

2. Earlier in the course I termed the function f : [0, 1]→ R given by

f(x) =

{

1 if x rational

0 if x irrational

pathological. It is not though, in the scheme of things, a complicated
function (imagine what a continuous nowhere-differentiable function
might look like). In fact it is zero except for at a countable number
of points. So it is a weakness of the theory of Riemann integration
that we can’t integrate this function. In a third year course a theory
of integration due to Lebesgue, from 1902, is studied. With Lebesgue
integration this function can be integrated. Can you guess at the value
of the integral?

3. Let P = {xi : 0 ≤ i ≤ n} and D be a refinement of P . It was left for
the student to prove that U(D, f) ≤ U(P , f).

The Upper sum for P is U(P , f) =
∑n

i=1 Mi (xi − xi−1) Choose any
y ∈ D \P . Thus there exists 1 ≤ j ≤ n such that xj−1 < y < xj. Then

U(P ∪ {y} , f) =
∑

i 6=j

Mi (xi − xi−1) + lubf
[xj−1,y]

(y − xj−1) + lubf
[y,xj ]

(xj − y)

(8)

We then use the facts that [xj−1, y] , [y, xj] ⊆ [xj−1, xi] and there is a
chance that f takes larger values when we extend the interval. Thus

lubf
[xj−1,y]

≤ lubf
[xj−1,xj ]

= Mj and lubf
[y,xj ]

≤ lubf
[xj−1,xj ]

= Mj.
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Hence RHS(8) is

≤
∑

i 6=j

Mi (xi − xi−1) +Mj (y − xj−1) +Mj (xj − y)

=
∑

i 6=j

Mi (xi − xi−1) +Mj {(y − xj−1) + (xj − y)}

=
∑

i 6=j

Mi (xi − xi−1) +Mj (xj − xj−1) = U (P , f) .

That is, U(P ∪ {y} , f) ≤ U(P , f). Continue adding in points from
D \ P , to get U(D, f) ≤ U(P , f).

4. For the statement of another criterion of integration define ∂P , of
a partition P = {a = x0 < x1 < .... < xn = b}, to be ∂P =
max1≤i≤n |xi − xi−1| , i.e. the maximum partition length.

Theorem 4.50 (Du Bois-Reymond 1875, Darboux 1875) A
bounded function f : [a, b] → R is Riemann Integrable if, and only
if,

∀ε > 0, ∃ δ > 0, ∀P ∈ Dδ, U(P , f)− L(P , f) < ε.

Here Dδ is the set of all partitions with ∂P < δ.

Proof Not given. �

For an application of this last result assume f : [0, 1]→ R is continuous.
We know then that it is bounded and Riemann integrable. Let Pn be
the sequence of arithmetic partitions of [0, 1] . Since ∂Pn = 1/n, Du
Bois-Reymond and Darboux’s Theorem shows that both U(Pn, f) and

L(Pn, f)→
∫ 1

0
f(x) dx as n→∞. Yet on each sub-interval [xi−1, xi] =

[(i− 1) /n, i/n] , of the partition Pn we have mi ≤ f (i/n) ≤Mi. Hence

L(Pn, f) ≤
1

n

n
∑

i=1

f

(

i

n

)

≤ U(Pn, f) .

Thus by the sandwich rule we deduce that

1

n

n
∑

i=1

f

(

i

n

)

→

∫ 1

0

f(x) dx

as n → ∞. This was the Integral Approximation Rule, Theorem 1.48,
of MATH10242.
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5. The proof of the result that continuous functions are integrable depends
on a property of continuous functions that we have not discussed. This
property is that if f : [a, b] → R is continuous then, since the domain
[a, b] is closed and bounded, we have

∀ε > 0, ∃ δ > 0, ∀x1, x2 ∈ [a, b] , |x1 − x2| < δ =⇒ |f(x1)− f(x2)| < ε.
(9)

Try to understand why this statement is different to the definition of
continuity. A function that satisfies (9) is said to be uniformly contin-
uous.

6. The result that
∫∞

1
1
xαdx converges if, and only if, α > 1 is reminiscent

of a result in course MATH10242 concerning those k for which
∑∞

r=1
1
nk

converges. But then there is often a connection between the series
∑∞

1 f(n) and integral
∫∞

1
f(t) dt. For instance, if f : [1,∞) → R is

a positive decreasing integrable function then the series and integral
either both diverge or both converge. This was Theorem 2.16, the
Integral Test of MATH10242.

7. The following is an example given without solution in the notes.

Example 4.51 Define f on [0, 2] by

f(x) =

{

0 if 0 ≤ x ≤ 1

1 if 1 < x ≤ 2.

What is F (x)? What is F ′(1)?

Solution

F (x) =

{

0 if 0 ≤ x ≤ 1

x− 1 if 1 < x ≤ 2.

lim
x→1−

F (x)− F (1)

x− 1
= 0 while lim

x→1+

F (x)− F (1)

x− 1
= 1.

Thus F ′ (1) does not exist. �
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